Iterations
MLOps Iterations contain information about a single machine learning model run
mlops.tracking.start_iteration
Function creates an instance of Iteration
Arguments:
-
iteration_name: string
name of the created iteration
-
project_id: string, optional
Id of the target project. By default value is the id of the active project
-
experiment_id: string, optional
Id of the target experiment. By default value is the id of the active experiment
-
send_email: bool, optional
If true email will be sent to email address specified in library settings. False by default.
Returns:
- iteration dictionary JSON data of the created iteration
iteration.log_model_name
Function logs the model name in the currently running iteration.
Arguments:
-
model_name: string
Name of the model that’s being tracked
iteration.log_path_to_model
Function logs the path to model file
Arguments:
-
path_to_model: string
Path to the file containing the tracked model
iteration.log_metric
Function logs a single metric along with it’s value
Arguments:
-
metric_name: string
Name of the logged metric
-
value:
Value of the logged metric
iteration.log_metrics
Function logs multiple metrics at once
Arguments:
-
metrics: dictionary
Dictionary containing metric: value pairs that are going to be logged
iteration.log_parameter
Function logs a single parameter along with it’s value
Arguments:
-
parameter_name:
Name of the logged parameter
-
value:
Value of the logged parameter
iteration.log_parameters
Function logs multiple parameters at once
Arguments:
-
parameters: dictionary
Dictionary containing parameter: value pairs that are going to be logged
iteration.log_dataset
Function logs an existing dataset with an iteration.
Arguments:
-
dataset_id: string
Id of an existing dataset in webapp
iteration.end_iteration
Function ends the iteration and sends the logged data to the MLOps App
Returns:
-
iteration: dictionary
JSON data of created iteration